Improved germination under osmotic stress of tobacco plants overexpressing a cell wall peroxidase.

نویسندگان

  • I Amaya
  • M A Botella
  • M de la Calle
  • M I Medina
  • A Heredia
  • R A Bressan
  • P M Hasegawa
  • M A Quesada
  • V Valpuesta
چکیده

The cell wall is a fundamental component in the response of plants to environmental changes. To directly assess the role of the cell wall we have increased the expression and activity of a cell wall associated peroxidase (TPX2), an enzyme involved in modifying cell wall architecture. Overexpression of TPX2 had no effect on wild-type development, but greatly increased the germination rate under high salt or osmotic stress. Differential scanning calorimetry showed that transgenic seeds were able to retain more water available for germination than wild-type seeds. Thermoporometry calculations indicated that this could be due to a lower mean pore size in the walls of transgenic seeds. Therefore, the higher capacity of transgenic seeds in retaining water could result in higher germination rates in conditions where the availability of water is restricted.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Translation Initiation Factor 1A (TheIF1A) from Tamarix hispida Is Regulated by a Dof Transcription Factor and Increased Abiotic Stress Tolerance

Eukaryotic translation initiation factor 1A (eIF1A) functions as an mRNA scanner and AUG initiation codon locator. However, few studies have clarified the role of eIF1A in abiotic stress. In this study, we cloned eIF1A (TheIF1A) from Tamarix hispida and found its expression to be induced by NaCl and polyethylene glycol (PEG) in roots, stems, and leaves. Compared to control, TheIF1A root express...

متن کامل

Overexpression of a Barley Aquaporin Gene, HvPIP2;5 Confers Salt and Osmotic Stress Tolerance in Yeast and Plants

We characterized an aquaporin gene HvPIP2;5 from Hordeum vulgare and investigated its physiological roles in heterologous expression systems, yeast and Arabidopsis, under high salt and high osmotic stress conditions. In yeast, the expression of HvPIP2;5 enhanced abiotic stress tolerance under high salt and high osmotic conditions. Arabidopsis plants overexpressing HvPIP2;5 also showed better st...

متن کامل

ThNAC13, a NAC Transcription Factor from Tamarix hispida, Confers Salt and Osmotic Stress Tolerance to Transgenic Tamarix and Arabidopsis

NAC (NAM, ATAF1/2, and CUC2) proteins play critical roles in many plant biological processes and environmental stress. However, NAC proteins from Tamarix hispida have not been functionally characterized. Here, we studied a NAC gene from T. hispida, ThNAC13, in response to salt and osmotic stresses. ThNAC13 is a nuclear protein with a C-terminal transactivation domain. ThNAC13 can bind to NAC re...

متن کامل

A CBL-Interacting Protein Kinase TaCIPK2 Confers Drought Tolerance in Transgenic Tobacco Plants through Regulating the Stomatal Movement

In plants, the CBL-CIPK signaling pathways play key roles in the response to abiotic stresses. However, functional studies of CIPKs in the important staple crop wheat are very rare. In this study, we identified a CIPK gene from wheat, designated TaCIPK2. Expression analysis results showed that TaCIPK2 could be up-regulated in wheat leaves by polyethylene glycol, abscisic acid and H2O2 treatment...

متن کامل

Overexpression of SbSI-1, A Nuclear Protein from Salicornia brachiata Confers Drought and Salt Stress Tolerance and Maintains Photosynthetic Efficiency in Transgenic Tobacco

A novel Salicornia brachiata Salt Inducible (SbSI-1) gene was isolated and overexpressed in tobacco for in planta functional validation subjected to drought and salt stress. SbSI-1 is a nuclear protein. The transgenic tobacco overexpressing SbSI-1 gene exhibited better seed germination, growth performances, pigment contents, cell viability, starch accumulation, and tolerance index under drought...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • FEBS letters

دوره 457 1  شماره 

صفحات  -

تاریخ انتشار 1999